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Abstract 

It is shown that it is possible to define 'true local entropy' in velocity space, in an approxi- 
mate version of the two-fluid formulation of quantum theory introduced by the present 
author in earlier papers. Using this definition, it is then shown that it is possible to define 
finite forms for total entropy at all points in configuration space. This important step 
is achieved by the introduction of a 'responding' velocity space. The use of a basis system 
which responds to occupation number density, makes possible a clear separation of the 
statistics and the dynamics of the underlying quantum process, and also makes possible 
the unambiguous use of certain divergent and oscillatory integrals. 

1. Introduction 

In a series of  earlier papers (Gilson, 1968a, b, c, 1969a, b, c) the present 
author has made much use of  various generalisations of  Wigner's phase 
space distributions to show that Schr6dinger quantum mechanics can be 
expressed in forms surprisingly close to classical fluid theory and thermo- 
dynamics. It  appears f rom this work that a completely 'classical' formu- 
lation of quantum theory is possible. However, one does encounter some 
severe mathematical difficulties. One of  these difficulties lies in the appear- 
ance of  divergent integrals which up to now one has only been able to 
work with on a very intuitional basis. This difficulty is due to the often 
required need in quantum investigations to analytically continue functions 
such as the Gaussian, exp(-x)  2, into regions of  complex x, when the 
grossly divergent factor, exp(+y2), appears in integrals. I t  turns out, as 
will be shown, that for our main purpose, which is to define local quantum 
entropy, this difficulty can be unambiguously overcome. 

Another difficulty which is troublesome is the fact that, in a local theory, 
functions will generally depend on more variables than they do in the 
global type of theory, of  which the Fourier transformed Schr6dinger 
equation formulation is an example. In the transformed Schr/Sdinger 
equation, momentum appears as a simple parameter, p, whereas in the 
local theory momentum appears as a function of x and t. In functions 
describing other properties, these local complexities may be great. This 
has the consequence that it is difficult to specify in detail general character- 
istics of  such functions and of integrals which involve them. However, this 
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type of difficulty is more technical than fundamental, and usually can be 
overcome. In fact, it is the greater complexity of texture which is possible 
in a local theory which gives such a theory a richness and a potentiality in 
excess of that possessed by conventional quantum theory. 

2. The Joint Fluid Distribution 

Expressed as a mass distribution over a two-fluid velocity space (v~,v2), 
a function which contains all the information (Gilson, 1969b, c) which 
can be derived from the usual Schr6dinger equation is 

+co +o0 

- o o  - o o  

x exp[-i(va ~'1 + v2 "/'2) m0] dr1 dr2 (2.1) 
where 

r = r ,  + / r2  (2.2) 
and 

p = ~b*(x, t) ~b(x, t) (2.3) 

It is not necessary to specify that the function r t) is a solution to 
the Schr6dinger equation. Rather, one can impose the condition that 
the two fluids are in a state of local thermal equilibrium (Gilson, 1969b) 
defined by 

/,(solute) +/,(solvent) = 0 (2.4) 

where the/~'s are thermal energies associated with the two fluids. In general, 
the function m(x, tlVa,V2 ) is a complicated function of the four variables 
x, t, v, and v2. It is also a functional of ~b(x, t). Because there is much scope 
for the functional form of qg(x, t), even though it is restricted to being a 
solution to the Schr6dinger equation as a consequence of(2.4), any general 
specification of the properties of m(x,t[vl v2) is of considerable technical 
difficulty. The main type of mathematical pathology exhibited by (2.1) 
is already present in an approximation to (2.1) which we shall now discuss 
in detail. We must further remark that m(x, t[vx, v2) is not a function which 
is positive everywhere. It can assume negative values in some parts of 
vl, v2 space (Gilson, 1969c). I f  we expand logr t) and 
log ~b*(x - hr/2, t) as far as terms quadratic in rl and r2, we get the following 
approximation to (2.1) 

+ m  + m  

m 0  3 

- 4  ( 12 -  22) 
- ~  -co 

+72rlr2~l " -  imo(rlvl +rzV2) drldr2 (2.5) 
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h 
Here 4 = 41 q- i42 = }- log ~b(x, t) (2.6) 

and the primes denote differentiations with respect to x. At this point, we 
encounter an interesting problem. One of the r integrations in (2.5) can 
always be done leaving a possibly divergent integral in the other r variable. 
That is, the r~ integral can be carried out where 42" > 0 and then the r2 
integration involves the divergent exponent exp(r22 r and vice versa 
for 42" < 0. However, it is possible to get some idea on how to proceed 
by pretending that both integrations in (2.5) can be done simultaneously. 
If  we do, temporarily, take this point of view and make use of the formula, 

f exp[i(-)tr2+kr)dr]=(Tr/ai)l/2exp +~--s (2.7) 
-oo 

to perform the integrations in r, and r2 successively, we get the following 
incorrect but instructive evaluation of (2.5). 

m03 
m'rri(E12 + E22)I/2 exp{amo2(U2 2 - -  Ul 2) -}- bmo 2 ul ~/2} 

where 

and 

a = e 2 / @ 1 2 + e 2  2) 

b =2E2/(~12+ E2 z) 
E=E, +ie2=4"(x,t) 

(2.8) 

(2.9) 

(2.1o) 

u = u l  + iu2 = v - 4 ' ( x , t ) / m o  ( 2 . 1 1 )  

is the complex thermal velocity relative to the mean complex velocity'~ 
The complex expressions (2.10) and (2.11) are here merely a convenient 
shorthand for combining pairs of expressions. Expression (2.8) is incorrect 
in at least two respects. These are that a factor, i = ~/-1,  has appeared in 
what should be a real function, and the divergence mentioned earlier has 
been bypassed. However, expression (2.8) does suggest an interesting 
conjecture, which we shall prove to be correct. The conjecture is that, in 
spite of the divergence problem, local velocity space entropy can be defined 
and as far as dependence on ul and Ua is concerned it is essentially given 
by an expression of the form 

1 r 2 2 
~(ul, u2) = f ~ t u 2  - ul + xul u2] (2.12) 

Actually, it turns out that (2.12) might more appropriately be called the 
relative local entropy of fluid '2' with respect to fluid '1'. It is necessary 
that we should be able to define local entropy in velocity space, if we are 
to employ a classical definition for total entropy such as 

H =  f f o(ul,u2)f(ul,Uz)duadu 2 (2.13) 

This would be equivalent to Boltzmann's H function. 
8 
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3. The Separate Fluid Distributions 
The integrand in expression (2.5) could be factorised into two parts, 

one only involving fluid '1' variables, and the other only involving fluid '2' 
variables, if the 7"1 r2 term were not present in the exponent integrand. 
Thus, if we could neglect the 7"~ 7"2 term, the function m itself would factorise 
into two parts, each only involving one of the fluids. It is clear that such 
a situation would correspond to the usual classical case when the product 
of two separate distributions gives the joint two-fluid distribution. The 
introduction of expression (2.1), and consequently the derivation of (2.5), 
can only be said to have had a certain ad hoe justification, and so we are 
really free to take as basis for this work forms other than (2.1), provided 
these other possibilities are as suitable, or preferably better, than our original 
choice. A better choice of starting point would, in the light of experience, 
be the two separate distributions implied by (2.5), if the 7"17"2 term were 
neglected. Expression (2.5) could then be reserved to describe the more 
complex situation when the additional interaction described by the 7"1 ~'2 
term is present. In fact, from the point of view of the limited objectives of 
this paper which are centred around defining some appropriate forms for 
entropy, we can disregard the 7"~ 7"2 term for a rather specific reason. This 
reason is that the 7" 1"/'2 term in (2.5) leads directly to the xul u2 term in (2.12) 
and if a term such as this is included in the local velocity space entropy it 
always averages to zero. This is because of the two results (Gilson, 1969b) 
contained in the real and imaginary parts of 

+co q-co q-co +co 

f f (v-~'/mo)m(x, tlv,,v2)dvldvz= f f um(x, tlvbv2)dv, dv2=O 
(3.1) 

where (2.11) has been used. Thus a term depending linearly on Ul or u2 
will not contribute to the total configuration space entropy at any point 
(x, t). As has been said, we are here only concerned with finding a suitable 
definition for entropy and with some of the consequences which will 
follow from such a definition. Thus, for these purposes, provided that we 
can find a justification for the square term part of (2.12) appearing in the 
velocity space definition of entropy, we can disregard the product term in 
the joint distribution (2.5) and take the two separate velocity space dis- 
tributions suggested by (2.5) as the basis of our work. Let us denote these 
distributions by R1 and Rz. 

A1( 1) 
RI ~ f 

q-~2 

R2 -- Az(-2)2~r f 

exp(-)trl 2 - imo ul 7"1) dT'l (3.2) 

exp(+2tT'2 2 -- imo uz 7"2) d7"2 (3.3) 
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where 
h .  tl 

= ~ ~z (3.4) 

A~ and A2 are functions ofcq and c~2 and possibly o fx  and t. They have been 
introduced in anticipation of the possibility that (3.2) and (3.3) are not 
necessarily normalised for all x and t. The infinite limits of integration which 
appear in (2.5) have now been replaced by the finite values • and "ca  
in order that we may work at least initially with convergent and well 
defined integrals. 

In (3.2) and (3.3), 2t is a function o fx  and t, and is not necessarily positive 
for all x and t. Thus, according to whether )t is positive or negative, so the 
integral in (3.3) or the integral in (3.2) will be infinite and oscillatory in the 
limit of ~ becoming infinite. 

4. A Physical Basis 

We shall now suggest a basis for the following work in terms analogous 
to the equilibrium described by the equality of the chemical potentials for 
two species in contact. We shall assume, in line with earlier work (Gilson, 
1969b), that the physical system underlying the processes which are usually 
described by the Schr~dinger equation is a two-constituent system. Else- 
where we have called these two constituents 'the solute' and 'the solvent'. 
This is a convenient terminology to retain. The solute is the constituent 
which most nearly approaches a simple classical fluid in character. The 
solvent is to be regarded more as a background fluid against which the 
solute is described. However, it can be seen that as the function A(x, t) can 
change its sign the two constituents can interchange their roles. Let us 
first consider the solute, and make the firm assumption that it can be 
described by a local form of Maxwell distribution up to the order of approxi- 
mation at which we shall work. Thus let its number concentration in velocity 
space be 

f l (v l  - ~l(x,t))  = ~kl--~((x,t)l. exp 2kT(x , t )  ] 

Before proceeding, we should draw the reader's attention to a number of 
features of (4.1). First, the temperature, T(x, t), is assumed to vary with 
position x and time t. Secondly, the velocity, u ( = v l -  vl), is the thermal 
velocity relative to the mean fluid velocity, ~1. Thirdly, we have taken 
[T(x,t)[ in the square root rather than just T(x, t). This last feature will 
clearly make no difference where T(x, t) remains positive. However, we 
are going to allow T to assume negative values and the modulus is there in 
order to avoid the appearance of a ~/-1.  Where T >  0, we shall have the 
usual normalisation condition 

+0o 

.I f l(ul)dul = 1 (4.2) 
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let us now define a function, /~(u, T), of two functions, g(u) and T(x, t), 
as follows 

/z(u, T) = logg(u) + mu2 (4.3) 
2kT 

We now impose on/,(u, T) the further condition that it is to be independent 
of u. That is to say, we take/~(u, T) to be an invariant in thermal velocity 
space. Under this condition, g(u) must be the f(u) given by (4.1), apart 
from a multiplicative function of T only. Thus/ ,  can be regarded as playing 
a role rather like the chemical potential and, in fact, expressing (by its 
invariance in velocity space) the equilibrium of the contributions from the 
various thermal velocities. We can now take this equilibrium idea further. 
I f  T changes sign in (4.3), then a corresponding change of sign of T in 
(4.1) will give another g(u), which still leaves ix(u, T)with the same constant 
value. Thus, besides the invariance o f / ,  in velocity space expressing the 
equilibrium between all the velocity constituents, this invariance also 
expresses another possible equilibrium between a fluid with the distribution 
(4. !) and another fluid with the distribution 

f2(v2 - v2(x't) ) = (2"n'k~(x, t)l ]'~l/2 exp ( -f mO(v2 - ~2(x't) )2 ) 2 ~ ( x - ~  (4.4) 

say. We have anticipated that (4.4) represents our solvent by using the 
subscript '2'. 

It is clear that forfz(u2) we have not got a normalisation condition like 
(4.2). However, we will show later that there is an equivalent condition. 
Thus, we shall take the two distributions (4.1) and (4.4) as the basis for 
the description of the two fluids underlying the quantum processes. These 
two distributions are linked by being dependent on the common function 
T(x, t) and also by a more indirect connection between the functions O~(x, t) 
and f2(x, t). At this point we can make the second firm assumption that the 
two distributions (4.1) and (4.4) contain essentially all the statistics in the 
theory. The expression (4.1) for fl(ul) is most satisfactory in this respect 
(for T >  0) because it is very convergent as ul -+ +o~ and it can obviously 
be regarded as a pure probability density in velocity space. A similar 
remark applies tofz(u2) for T <  0. The expression (4.4) forfz(u2) for T >  0 
(and indeedf~ for T <  0) presents more difficulties. It cannot, as it stands, 
be regarded as a pure probability contribution because it diverges as 
u2 -+ +co and it is clearly not normalisable. There is no reason, however, 
why it should not be regarded as giving the occupation number density for 
the various velocity states in the case of fluid '2'. Thus it is convenient to 
regard both (4.1) and (4.4) as representing the numbers of 'particles' 
present in the velocity ranges 3Ul and 8u2. Having assumed that f l (u0  
and f2(u2) contain all the statistical features of our thermal velocity space 
description, the question arises as to what use are we to put this statistical 
information. What shall we average ? We shall show that averages of a 
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certain dynamical characteristic (which we shall call 'r ')  make possible the 
link with conventional quantum theory. 

5. Velocity Space Response 

This step of regarding all the statistics as relegated to the two Maxwell-like 
distributions (4.1) and (4.4) is an important one. However, we clearly have 
not yet got a suitable basis for quantum mechanics, because we have yet 
to relate (4.1) and (4.4) to the type of 'distribution' (2.1) which arises in 
the two-fluid theory and which we have proved elsewhere (Gilson, 1969b) 
corresponds to quantum mechanics. The fact that we now have to make 
this connection holds the implication that the quantum mechanical orien- 
tated distributions are not just pure statistics. They are, in fact, statistics 
weighted with some dynamical feature, and this we shall demonstrate. In 
earlier work (Gilson, 1969c), we used a mass distribution in order to clarify 
one of the anomalous features of the quantum-orientated distributions. In 
particular, the fact that there is a place in dynamics for negative mass 
enabled us to make a correlation between negative mass states and negative 
'probability'. We shall not need to continue to assume that our statistics 
is mass weighted for the purposes of this paper. We can usefully talk in 
rather more general terms and leave open the question of whether the 
weighting of our statistics should be mass, charge spin, etc., or indeed 
some new physical parameter. Thus we shall now assume that we are 
studying a statistical two-fluid system which requires for its complete 
description an additional physical parameter over and above those usually 
required for simple classical fluid systems. Let us denote this new parameter 
by the letter 'r ' .  In particular, r will have to play the role of representing the 
non-statistical aspects of  the fluid system in velocity space. Usually a 
statistical system is described against a static geometrical background. In 
order to bring a hyper-statistical element into our fluid scheme we shall 
now assume that our system is naturally described against a non-static 
geometrical background and it will be the parameter r which describes this 
non-static aspect of  the geometry. We shall use a thermal velocity (or 
phase) space which under some circumstances responds (r) to the occupancy 
of its states. The parameter r is to denote this response. In the case of 
distribution (4.1) for T >  0 no response is necessary because of its simple 
classical form. In the case of distribution (4.4) for T >  0, which can be 
regarded as, in some sense, overloading velocity space, a response must 
be allowed. If  it were not allowed, unlimited numbers of particles would 
be effective at large velocities and this would cause a conceptual breakdown 
of the theory (or indeed a physical breakdown of the system). The purpose, 
then, of  r is to make physically tolerable those statistical situations which 
would otherwise not be allowable classically but which seem essential in 
the quantum domain. In purely mathematical terms r can be regarded as 
a measure defined on velocity space. 

As we have said before, the statistics is to be contained in the two 
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Maxwell-like distributions (4.1) and (4.4), while the availability of states 
of 'r '  in velocity space is to be outside the statistics, and is thus the source 
of what often has seemed to be the statistical peculiarities of quantum 
mechanics (Suppes, 1963). Let us now consider the functional form we 
might reasonably expect the response function r(u) to take. 

Our thermal velocity space is now to respond to some 'abnormal' states 
of occupancy. Thus our velocity space is dynamic. We can assume that the 
fact that the velocity space is being occupied causes a response of self 
modification which takes the form of making available bands of possible 
positive and negative response states. In the mass distribution interpre- 
tation these states would be the location of positive and negative mass. 
These states are then occupied in a specific way. These two processes take 
place simultaneously and are a self-adjusting and stabilisation process for 
the whole system. A reasonable physical assumption is that the response 
is a locally 'felt' effect. Thus in the first instance it will depend on position 
in velocity space and on the local temperature which is non-uniform in 
this scheme. Thus we shall assume that r is at least a function of u and T. 
One would also expect that the response at velocity u and temperature T 
would depend on the complete information about occupancy throughout 
velocity space. Thus r(u, T) will also be a 'functional' of the occupancy 
functions (4.1) and (4.4). Let us generally denote the occupation number 
functions byf(u).  The connection with conventional Schr~3dinger quantum 
mechanics will be via a relation of the form 

R(u, r) 7") (5.1) 

where R(u,T) now takes the place of the mass distribution (2.1) used in 
earlier work and f(u) is either (4.1) or (4.2), or possibly other states of 
occupancy. As remarked earlier, it has been noticed (Suppes, 1963) for 
years that, statistically speaking, quantum mechanics is a queer theory. 
This shows up particularly in attempts to give velocity (or phase) space 
versions of the theory (Wigner, 1932; Moyal, 1949; Bartlett & Moyal, 
1949; Leaf, 1968). One of the oddities is that it seems impossible to avoid 
the introduction of phase (or velocity) space distributions which have 
negative regions. It will be shown in this paper that when we have separated 
the statistics and the dynamics by making use o f  the r property such 
negative contributions arise from r and naturally negative 'probabilities' 
do not occur. Let us return to the question of the functional dependence 
of r(u, T) onf(u).  A reasonable choice for this dependence is 

U -}-co 

r(u,T,[f]) = f F(f(u'))gl(u')du'+ f F(f(u'))g2(u')du' (5.2) 
- o o  u 

F(f(u)) is an ordinary function of the function f(u) and gl(u) and gZ(U) 
are ordinary functions of u. The response, r, thus depends locally on u and 
also has a functional dependence on f This global dependence on f is 
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indicated by the square brackets in r. The integration range in (5.2) has 
been purposely split into the two parts so as to achieve the two types of 
dependence in the simplest possible way. 

A natural symmetry to be expected from r(u) is 

r(u) = r(--u) (5.3) 

This is the simple physical requirement that nature cannot distinguish 
between positive and negative thermal velocities. Thus, after a change of 
variable, we get from (5.2) and (5.3) the condition 

cO 

+ f 
- - c o  U 

i 
- -o0  U 

I f f (u)  is one of the even functions of u, (4.1) or (4.4) and provided F(f)  
is assumed to be a polynomial function off ,  then (5.4) suggests that 

gl(u) = g2(-u) (5.5) 

That F ( f )  is assumed to be no more complicated than a polynomial in 
f ,  can be regarded as a simplicity postulate. More involved theories could 
be developed on the basis of alternative assumptions for the form of F(f). 

If  (5.5) is taken to apply, then the two parts of (5.2) can be combined 
together to give 

oo q-U 

r(u, T, [f]) = 2 -J- F(f(u') ) gz(u') du' + _.(F(f(u'))gz(u') au' (5. 6) 

From (5.6), we see that, ifgz(u) is taken to be an odd function of u, another 
simplification is possible. Thus we shall take 

g2(u) = -g2 ( -u )  (5.7) 

and so reduce the expression (5.6) for r to the form 
co 

r(u, T, [/]) = 2 f F(f(u') ) g2(u') du' (5.8) 
U 

This author can see no obvious physical reason for assuming (5.7), 
unless it be something to do with causality. However, here we are looking 
for the simplest structure which is adequate, and so we shall use (5.7). 

More general cases could be considered, but the form (5.8) which we 
have arrived at turns out to be sufficient for our purpose. At this stage it 
seems to be difficult to decide more closely the form of the functions F 
and g by general considerations. Thus we shall now turn to relating the 
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form (5.8) to the more quantum orientated type of distributions (3.2) and 
(3.3) through the relation (5.1). 

6. Identification oft[f] 

In order to gain more information about the dependence of r on f and 
the function g2(u), we now make the identification implied by (3.2), (3.3) 
and (5.1). Thus we require that 

Al(~l)2 f exp(--'~'rl2)cosm~ ~'1 d'rl =fl(Ul)r(Ul) (6.1) 

wheref(u~) is given by (4.1) with u~ = vl - ~1. There is no difficulty when 
A > 0. This is particularly so if 0~ 1 is allowed to approach +o% because 
then the integral is easily evaluated. However, we shall not assume that 
;~ > 0, but rather consider the case for general A. If  we differentiate r as 
given by (6.1) with respect to u~, we get 

a S au = - f  r2(u) ~ f exp(-a~2) cos(mou~) a. - 

- f i l (u)  m o f exp(-At2) sin(mo ur) dr 

(6.2) 

l umo 

f 
where the second term in (6.2) has been integrated by parts and (4.1) has 
been used. If  A is positive, we know that the integral in (6.1) presents no 
difficulties and is easily evaluated when el ~ ~o to give 

A l ( - l )  (6.4) r(u3 2~ 
and 

=mo kT/2 (6.5) 

This agrees with (6.3), which vanishes when (6.5) holds and o~ -+ oo. 
This is the classical situation when velocity space is static, and is char- 

acterised by the result (6.4) which says that the response is a constant on 
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velocity space. However, when A is negative things are distinctly different. 
If  we return to our assumed form (5.8) for the response function and 
differentiate it with respect to u, we get 

Or 
Ouu = --2F0Cl(U)) gz (u) (6.6) 

We cannot now deduce (6.5) from the limiting form of our integral, but we 
can simply use (6.5) to define T in terms of A. Thus from (6.3), we get 

ar 
0--u = + f71(u) exp(-m0 kTa2) sin m 0 ua (6.7) 

This can be compared with (6.6) to give 

F(f,(u)) =fT ' (u)  
and 

g2(u) = -exp( -mo k Tc~ 2) (sin mo u~) (k T) -l 

(6.8) 

(6.9) 

Thus when ?t is negative and consequently T is negative by (6.5) we 
cannot use the limit e -+ 0o without (6.9) oscillating infinitely. However, 
we have now in (6.8) and (6.9) identified F ( f )  and g2(u). It follows that the 
final form for the response function, functional is given by 

after making use of the fact that sin (mo u~) is an odd function of u. The 
two cases A >< 0 are both contained in (6.10) with the simplification arising 
for T > 0 and ~ -+ ~ when we get the classical case, r = constant. 

The same argument also applies for fluid '2'. In that case the ~ in formula 
(6.10) appears with a plus sign, and instead offl(u) the other functionfz(u) 
now occurs in the functional r. Thus when one of the fluids is simple and 
classical, the other is of the overloading type, and thus causes a response 
like (6.10), with A < 0. Because we cannot use the infinite ~ limit at all 
points (x, t), we must give some attention to the question of the range of 
integration of the ~ variables. 

In order to allow the integration ranges to adjust to the variations of 
fluid character which occur where T(x, t) changes sign, we shall adopt the 
following scheme. 

Let 

and 

t31=el  w h e r e T > 0  

= e z  w h e r e T < 0  

32 = ~2 where T >  0 

= e l  w h e r e T < 0  
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while 51 
the formulae 

ill(T) = 5l O(T) + 52 O(-T) 

/32(T) = 52 O(T) + 51 O(-T) 

J. G. GILSON 

and 5 2 are both positive. These definitions are summarised in 

(6.11) 

where O(x) is the step function 

O(x) = 1 (x > O) 
(6.12) 

= 0 (x  < 0) 

We can now redefine the integrals (3.2) and (3.3) With the more adaptable 
limits 131 abd/32. Thus in (3.2) and (3.3) we make the changes 

+~1 +ill(T) +,~2 +f12~ T) 
f -+ ! and ~ (6.13) 

-~1 -fl T) -~2 -/~2(T) 

and then 51 can be allowed to approach infinity if it suits us, but 52 must 
be kept finite. It is not difficult to show that, if  this formalism is used to 
take averages of polynomials in the velocity variables, results do not 
depend at all critically on the values of the 5 integration limits. In fact, 
averages of powers of ul or u2 always lead to expressions which depend 
on these limits through additive delta functions or derivatives of delta 
functions. Thus the 5 limits contribute by functions such as 8(")(5), which 
is zero for 5 > 0. 

This particular feature was utilised in a provisional version of  this 
formalism and in a somewhat different way in an earlier work (Gilson, 
1969d). We now have a complete and unambiguous formalism which is 
adequate to cope with our objectives up to the order of  approximation at 
which we have chosen to work. We shall now consider entropy. 

7. True and r Weighted Entropy 

The scheme developed in the previous sections gives a clear separation 
of the statistical and the dynamical aspects of the quantum orientated 
distributions (3.2) and (3.3). Thus the definitions for local velocity space 
entropies for the two fluids are immediate. They are 

m 0 Ul 2 
al(ul) 2kT (7.1) 

and 

mo u2 2 (7.2) 
aE(U2) : 2kT 
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The actual signs of ~1 and cr2 being determined by the sign of the temper- 
ature, T(x, t). Further, at points where T(x, t) has a suitable sign total 
true entropies (H functions) are also straightforward. For example 

+~ [ mou2\ 
H ( x , t ) :  f cr(u)exp~• '/z (7.3) 

-co 

for one or other of the fluids, provided :~T < 0, 
In all our work we shall keep infinite integration ranges for velocity 

variables. Thus when :kT> 0, integrals such as (7.3) will diverge, and it is 
at places where :kT(x, t) > 0 that the r weighted entropy becomes important. 
Thus at such points we can define finite r weighted total entropies as 

f o-(u) exp r(u)du(mo/2zrktTl) 1/2 (7.4) HAx, t) = 2kT 

and these will be well-defined convergent integrals and, indeed, they 
coincide with total true entropy at normal fluid positions. Further, the 
integrands in the Hr(x, t) are directly correlated with the quantum orientated 
distributions (3.2) and (3.3) via the relations 

exp ( mo(~ _ ,5~)2] r(v, - Vl, T, 2kT ] [A])(m~ 
% 

+th (7.5) 
- , , -p - imo~b , [  hTl \ (X_l_h'gl �9 ~ ~x--~- , t )gJ  -~-)t)exp(-w,-r,)dz, 

and 

exp/~'-t+m~ g2)! ) \ r(vz - 1)2, T)[f2])(mo/2~rk[  TI) 1/2 
I 

(7.6) 

~ p  -lrn0~ ~b*(x-hi'r2t)~b(x-~,t)exp(-iv2~2)d~'2-~-, 

It is not difficult to confirm that the r functional enables us to write down 
an r-weighted normalisation condition equivalent to (4.2). This is 

+oo 
f.~(U2) du2 = (7.7) r(/,/2) 1 
- o o  

If it is felt necessary to retain all infinite limits for the integrations, we can 
make use of the value ofr  at u = 0. The factors A (7) introduced into equations 
(3.2) and (3.3) can then be exploited to define a local entropy constant in 
velocity space. Thus, ifs(u) is the then renormalised entropy, then S(0) = 0. 
This entropy vanishes for zero thermal velocity. Such a procedure could be 
regarded as a local form of application of Nernst's theorem. 



114 J.G. GILSON 

It is, perhaps, not clear at this juncture how best to extend this theoretical 
structure. Such questions as to whether the ~- integration limits should be 
kept finite or allowed to become infinite or, indeed, made to depend in 
more detail on other factors, may probably be answered in some wider 
context. Some further physical requirements might as well usefully be 
imposed on the structure. Clearly, the work in this area is very open ended 
and there are many options for further development. We shall now complete 
this section by discussing briefly the results of evaluating the r-weighted 
entropies for the two fluids at (x, t) in configuration space. These results 
are easily found to be 

+co 

f crl(Ul)fx(Ul) r(ul, T, [fl]) du, = +~ (7.8) 
- c o  

and 
+oo 

f a2(u2)f2(uz) r(u2, T, [f2]) du2 = --~ (7.9) 
- o o  

In this case of fluid '2', where T(x, t) > 0, the ordinary total true entropy 
is infinite and possibly of not much physical significance, and a similar 
remark applies to fluid '1' when T(x,t)< 0. From (7.8) and (7.9) we see 
that the sum of the total r-weighted fluid entropies is zero. This would seem 
to be another aspect of Nernst's theorem, with the implication that the 
local (in configuration space) 'entropy' of a pure quantum state is zero. 
Further, the relative [difference of (7.8) and (7.9)] local r-weighted entropy 
is a constant throughout configuration space and for all time. These features 
are strikingly reminiscent of the 'classical' two-fluid theory (London, 1954) 
for liquid helium, and suggests that the underlying quantum process is an 
interaction between a normal fluid and a super fluid. 

However, the situation in this formalism for the quantum case is a 
somewhat different configuration of fluid and superfluid to that discussed 
by London (1954) for the liquid helium case. In the liquid helium situation 
one of the fluids can be considered to carry all the entropy. Here the total 
entropy of the two fluids is zero and the 'relative" motion carries all the 
entropy. 

Conclusions 
Most of the work in this paper is concerned with an approximation to 

Schr/Sdinger quantum mechanics. However, it is this author's view that 
this particular approximation is of considerable significance and can give 
rather general information about the processes underlying quantum 
mechanics. It seems that this local description in velocity space can be 
brought very close to the classical Maxwell gas situation, in many respects, 
and can also be seen to have some very interesting similarities with super- 
fluid theory. The complications which arise do not seem to be the result 
of essentially non-classical effects, but rather the consequence of properties 
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o f  a subs t r a tum which is less s imple than  the wel l -s tudied classical systems. 
Wi th in  an  a p p r o x i m a t e  f ramework ,  we have shown tha t  two types  o f  
en t ropy  can be defined. I t  will, o f  course,  be necessary to  go b e y o n d  this 
a p p r o x i m a t i o n  and  this may  no t  be an  easy mat ter ,  bu t  such fur ther  
progress  wou ld  appea r  to  be o f  a technical  na ture  wi thout  drast ic  phi lo-  
sophical  difficulties. The  works  of  Made lung  (1926), Vigier (1954), Ne l son  
(1966, 1967), Ke r shaw (1964), Bohm (1957) and  Gi l son  (1968d) also con- 
ta in  work  which is re la ted  to the ideas in this paper .  
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